
JSyn – A Real-time Synthesis API for Java

Phil Burk
75 Pleasant Lane, San Rafael, CA, 94901 USA

http://www.softsynth.com, philburk@softsynth.com

Abstract: JSyn provides real-time unit generator based synthesis for stand-alone Java applications, or Applets in
a web page. Units can be created and connected “on the fly” to allow dynamic modification of synthesis
topologies. The synthesis is performed by ‘C’ code hidden in a Netscape plug-in or DLL beneath Java native
methods. JSyn uses a time-hashed event buffering system to provide accurate timing for output events. JSyn is
available at “http://www.softsynth.com/jsyn”.

1 Introduction

1.1 Rationale

The majority of software synthesis packages are
based on a proprietary language, or in some cases
a graphical environment in which to compose
music. They are excellent tools for composers but
cannot be easily used by application developers
such as game programmers who are using a
mainstream programming language. So I decided
to implement a real-time audio synthesis API
(Application Programmers Interface) which can be
used by programmers writing in Java. By using an
existing language, I can leverage off of the large
community of developers who are contributing to
the Java language. This leaves me free to
concentrate my efforts solely on the audio
synthesis features of JSyn.

I chose Java because it is an excellent object
oriented language that is designed to be host
independent. Because of its portability, Java has
become a popular language for the World Wide Web. Unfortunately, the original implementation of Java only
supports simple playback of 8 bit “.au” audio samples at 22 KHz. But using JSyn, Java developers now have
access to a flexible unit generator based synthesis engine that can provide high fidelity audio for the World Wide
Web, or for stand-alone Java applications.

2 Application Programmer Interface (API)

2.1 Design Goals

I had several goals in mind when designing the API for JSyn. I wanted JSyn to be portable across multiple hosts
which is a fundamental issue with any Java API. I also wanted to hide low level aspects of the implementation
such as whether the low level synthesis engine was running on the CPU, or on a DSP, perhaps on a PC sound
card. I also wanted the API to be minimal, yet orthogonal, complete and easy to use

2.2 Creating Unit Generators

Unit generators are created by instantiating Java classes defined under JSyn. For example to create a sawtooth
wave oscillator, one would use:

SawtoothOscillator myOsc = new SawtoothOscillator();

2.3 Starting and Stopping units

Unit generators can be “started” which places them in a list of units to be executed by the synthesis engine. To
start a unit, simply write:

myOsc.start();

Java classes implementing API

Glue to native ‘C’ code generated by “javah” or a
Netscape tool for plugins.

CSyn - ‘C’ API equivalent to JSyn API

Synthesis Engine running under interrupts or
background thread.

Host specific connection to audio drivers such as
DirectX™ under Windows95™

JSyn

2.4 Connecting ports

Unit generators have input and output ports which can be connected. This allows one to create complex circuits
from multiple unit generators. To connect the output of the oscillator to the input of a filter, one would write:

myOsc.output.connect(myFilter.input);

Output ports can be connected to multiple input ports. Inputs can have only one output connected to them.

Internally, all signals that are passed between units are either RAW_SIGNED which ranges from -1 .0 to 1.0 or
RAW_UNSIGNED which ranges from 0.0 to 2.0. This is to allow implementation of the synthesis engine on a fixed
point DSP accelerator if needed.

2.5 Setting Unit Parameters and Signal Types

The inputs on a unit generator can also be set directly by the application. For example:
myOsc.frequency.set(fundamental * (3.0/2.0)); /* perfect fifth */

The set() method accepts values in units that are appropriate to the unit generator port. For example, oscillator
frequency is specified in Hertz. Other signal types that are converted include sample rate, filter cutoff, exponential
lag decay rates, delay times, etc. The signal type of a port defines the range of allowable values, and how those
values are converted to the native internal values. For example, the formula for converting between a frequency in
Hertz and the internal phase increment value is:

nativePhaseIncrement =freqInHertz * (2.0 / audioCalculationRate);

Arithmetic units can be used to scale audio or control signals for precise modulation. In such a patch, the center
frequency of an oscillator might be controlled by setting the input port of an AddUnit. Rather than force the
programmer to specify frequency in that port’s default signal type, RAW_SIGNED, the programmer can force the
signal type of the port to be OSC_FREQ. Then the offset frequency can be specified in natural units.

myAdder.inputB.setSignalType(Synth.SIGNAL_TYPE_OSC_FREQ);
myAdder.inputB.set(300.0); /* center frequency of modulated oscillator in Hz */

2.6 Busses

JSyn provides busses that can be used to mix an arbitrary number of signals together. Unit generators called
BusWriters and BusReaders convert normal signals to bus signals. BusReaders have a SynthBusInput which
can have multiple SynthBusOutput ports connected to it. All of the SynthBusOutputs connected to a
SynthBusInput are summed together.

2.7 Data Types – Samples versus Tables, Envelopes

JSyn supports three classes of containers for data. The application can only access the data inside these classes
through read() and write() methods. The data cannot reside in arrays in the user program while being used by the
engine. This allows the implementer of JSyn to place the data in a special memory area such as the RAM on a
sound card, or in local static RAM on a DSP. This also gives the implementer an opportunity to flush the CPU
data cache in case the audio data needs to be accessed via DMA hardware.

A SynthSample object contains integer data, typically 16-bit mono or stereo. It is used for storing digital audio
samples such as might be read from an AIFF or WAV file. The data can only be read or written sequentially by
unit generators such as the SampleReader_16V1 or the SampleWriter_16F1. Readers and writers can be
combined to implement long delay effects like multi-tap echoes which are useful for modeling early reflections in
a room. Since samples are large, they are most likely to reside in main memory or in DRAM on a sound card.

A SynthTable object may contain fixed point data, or floating point data if the host supports it. SynthTables
can be accessed randomly by unit generators such as the WaveShaper, TableOscillator or short delay units.
Tables are usually small and could possible be stored in static RAM on a DSP.

A SynthEnvelope contains duration-value pairs. They are accessed sequentially and may be stored in main
memory or in static RAM on a DSP. Envelopes may be used for contour generation, or breakpoint oscillators.

2.8 Queuing

Applications can queue blocks of data within a SynthSample to a SynthSampleQueue that is a port on a unit
generator. The blocks of data will be played in order until the queue is empty. As an option, a data block can be
queued with the LOOP flag set which will cause the block to be played repeatedly if it is the last block in the

queue. If another block is queued while another block is looping, the loop will finish and then the new block will
be played. Here is an example of queuing the attack portion of a sample followed by a sustain loop.

 mySampler.samplePort.queue(mySamp, 0, attackSize);
 mySampler.samplePort.queueLoop(mySamp, loopStart, loopSize);

Blocks of SynthEnvelope data can be queued for playback on the envelope playing unit generators in the same
fashion.

2.9 Hierarchical Circuits (Patches)

By sub-classing the SynthCircuit class, an application programmer can combine a number of unit generators
connected together in a patch. These circuits can have programmer defined ports and can be used in place of unit
generators. When a circuit is started, all of the units within it are started simultaneously allowing precise timing
relationships between units to be preserved.

2.10 Event Buffering

The Java Virtual Machine does not provide the precise real-time scheduling generally required for music. JSyn,
therefore, provides an event buffer that allows one to schedule critical operations at a specific time. You can
schedule the starting and stopping of unit generators, the setting of unit parameters, and the queuing of sample and
envelope data.

For timing, JSyn uses a tick counter which is incremented every time a block of 64 samples is calculated. Here is
an example that queries the current time and then schedule operations in the future.

 int time = Synth.getTickCount();
/* Start 300 ticks in the future. */
 myOsc.start(time + 300);
/* Set frequency to 220 Hz 400 ticks after starting. */
 myOsc.frequency.setAt(time + 700, 220.0);

3 Implementation

3.1 Time Hashed Event Buffer, Event types

The event buffer in JSyn stores time stamped events in linked lists. (See figure 2.) When events are placed into
the buffer by the foreground task, the background task must be held off to prevent corruption of the linked lists. If
the background task is held off too long then JSyn may not be able to keep up with real-time. So insertion, and
also removal from the buffer, must be very efficient. I experimented with several techniques and settled on a time
hashed array of linked lists.

When an event is to be posted, the timestamp value is converted to an array index using a hashing function. The
index is used to access an array of linked list headers. The event is then inserted into the indexed list in sorted
order. I initially used the hashing function {i=t&255} but found that when I scheduled my events at increments of

Time hashed array of
list headers.

Events sorted by time.

Hashing Function

i = (t^(t>>8))&255

t=0x0000 t=0x0101 t=0x0101

t=0x0001 t=0x0203

t=0x0300 t=0x0407 t=0x0407

t=0x00FF

JSyn Event Buffer

(figure 2)

i=0

i=1

i=2

i=255

a power of 2 ticks, such as every 64 ticks, then the events piled up in just a few of the lists. Those lists became
quite long which slowed down the insertion sort. By XORing the first and second bytes of the time value, {i =
(t^(t>>8))&255}, I found that the events spread more evenly among the lists.

3.2 Secure API for Java, Tokens and Deferred Deletion

One of the key features of the Java language is that unfamiliar programs found on the web can be run safely on
peoples’ home computers. Java does this by using several techniques including eliminating the use of pointers
and by checking all array references for over indexing. Native ‘C’ libraries used by Java must be designed so that
unscrupulous programmers cannot wreak havoc on someone else’s machine. For this reason the underlying ‘C’
API does not use any pointers except for pointers to safe Java objects. When CSyn, the native ‘C’ synthesis
engine, allocates a data structure, the pointer is kept internally and an integer token is passed back to the Java
program. When tokens are passed back to CSyn from Java they are checked for validity before use.

When a program dynamically allocates lots of resources, a problem can occur if a resource is deleted while there
are still outstanding references to it. For example, if you used the event buffer to schedule the starting and
stopping of a unit in the far future, then immediately deleted that unit, you might have references to a non-existent
unit in the event buffer. When it came time to start that unit, the ‘C’ engine could crash. To avoid that problem, all
references by one resource to another resource are counted, and deletion is deferred internally until all of the
references are eliminated. Thus, in the above case, deletion will not take place internally until after the stop event
has been executed. One can take advantage of this feature by scheduling sound events in the future and then
immediately deleting all the objects involved. The actual deletion will not occur until after all the events have
safely finished.

3.3 Performance Optimization

In order to achieve reasonable performance on a general purpose CPU, I employed several optimization
techniques. All sample computation occurs in blocks of 8 samples. As suggested by Adrian Freed, arrays are
indexed using explicit indices (a[I]) instead of pointers (*a++). Sine waves are generated using a Taylor
expansion out to the term (x**9/9!) which is more accurate, and faster than a table lookup on a Pentium.

Here are benchmarks from a 233MHz Pentium MMX showing percentage CPU cycle utilization.

Envelope_Segmented 0.80% Noise_White 0.63%

Osc_Sine 1.65% Filter_StateVariable 1.79%

Osc_Table 1.45% Osc_Impulse 0.43%

Sample_Read16V1 1.59% Osc_Triangle 0.88%

4 Applications Written Using JSyn

JSyn has been used to implement several interactive audio programs running on the web that can be explored by
visiting http://www.softsynth.com/jsyn using Netscape Communicator. One application is a traditional drum-box
that allows multiple players to perform together in real-time by communicating through a server written by the
author. More abstract interactive compositions, and an on-line synthesis tutorial are in the works.

Nick Didkovsky and the author are currently using JSyn to implement JMSL, a Java Music Specification
Language that incorporates many of the design concepts of HMSL (Burk et al). Robert Marsanyi has used JSyn as
a foundation for Wire, a graphical patch editor.

5 Summary

JSyn provides a flexible unit-generator based synthesis API for Java programmers. The high fidelity of JSyn’s
audio output, and the precision with which musical events can be scheduled, make it a suitable API for the
development of on-line games, interactive compositions, or virtual environments. The wealth of employment
opportunities for Java programmers also suggests that JSyn would be an appropriate tool for teaching audio
synthesis at the college level.

6 Reference Links

Phil Burk, Larry Polansky, David Rosenboom, “HMSL”, http://www.softsynth.com/hmsl

Adrian Freed, “Clear, Efficient Audio Signal Processing in ANSI C”,
http://cnmat.CNMAT.Berkeley.EDU/~adrian/Csigproc.html

